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Abstract

Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures

that were initially considered to be successful at the time of treatment and post-operative angiography.

In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However,

there are other cases in which the treatment devices function properly. In these instances, the subsequent

complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To

investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic

stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm

and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the

treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment

flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow

upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation

of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall

shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that

it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system

and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to

the immediately adjacent vessel wall.

Keywords: aneurysm, computational fluid dynamics, post-treatment hemodynamic stresses

Abbreviations: CFD, computational fluid dynamics; SAH, subarachnoid hemorrhage
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1 Introduction

Patients diagnosed with an aneurysm receive treatment by means of either endovascular coiling or

surgical clipping. Despite their widespread use, these two treatment techniques are not always successful in

eliminating the risk for subsequent aneurysm rupture and subarachnoid hemorrhage (SAH). For the coiling

technique, one of the primary failure mechanisms leading to aneurysm re-growth, re-canalization, and re-

bleeding is coil compaction [9, 10, 40, 48, 65, 67]. A dense packing of coils is necessary to promote blood

stasis and subsequent isolation of the aneurysm from the vascular system. Yet, even in the best cases, the

coiling material accounts for less than 50% of the total treated aneurysm volume [41, 46]. Consequently,

coil compaction can occur and is especially problematic for giant aneurysms, large aneurysms containing

thrombus, and aneurysms that project along the direction of blood flow in the parent artery [39, 88]. In

addition, a loose packing of coils can lead to coil unraveling and migration into the parent artery and

subsequent aneurysm re-growth [60, 88]. As a result, about 14% of the cases that are considered “successfully”

treated at the time of coiling unexpectedly exhibit aneurysm recurrence [9]. Overall, the hemorrhage or re-

hemorrhage rate after aneurysm coiling is roughly estimated to be 0.79% per patient-year [48], although

this may be higher for incompletely treated aneurysms. For surgical clipping, the risk of re-growth for a

completely clipped aneurysm is about 0.26-0.52% annually, while that for de novo aneurysm formation is

about 0.89-1.8% [12, 79]. To reduce the number of these failed clipping procedures, clinicians have narrowed

the definition of what constitutes an acceptable residual aneurysm neck during intraoperative angiography;

1-2 mm residual necks, which were once considered to be insignificant, are now eliminated when surgically

feasible by placing the clip as flush as possible with the long axis of the aneurysm neck [55]. Despite these

measures, aneurysm remnants, de novo aneurysms, re-growth, and rupture sometimes unexpectedly occur

following procedures that were initially considered to be successful due to a perfect clip placement at the

time of surgery and post-operative angiography [78]. In some cases, the treatment failure can be attributed

to clip slippage or to a faulty clip [22]; however, there are other cases in which the clip functioned properly

and complete aneurysm obliteration was achieved [7, 87].

While these latter types of failure may be due, in part, to the pathological factors, such as congenital

defects, hypertension, atherosclerosis, and thrombosis, hemodynamics may also play an important role in

the post-treatment pathogenesis of aneurysms [69, 87]. It is well documented in the literature that extreme

hemodynamic stresses can have a detrimental effect upon the integrity of arteries [3, 13, 14, 15, 29, 30, 31,

32, 45, 53, 57, 81, 82]. Fry demonstrated that exposure of the artery wall to shear stresses of 37.9 Pa results

in a significant deterioration of the endothelial surface [29]. The computational work of Hassen, et al. found

a correlation between the aneurysm rupture locations and regions of high wall shear stress (WSS) [35]. In

regions where the WSS is low and the wall shear stress gradient (WSSG) is high, such as that at points of

flow separation and reattachment, the endothelial cells have high cell division rates and a low cell density,

which can lead to the influx of low density lipoproteins and subsequent changes to the structural integrity
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of the artery wall [86]. In vitro studies have also shown that endothelial cell function and growth are altered

for wall shear stress gradients greater than 800 dynes/cm3 [14, 15]. And, flow unsteadiness, which causes

arterial wall vibrations or resonance, can have a degenerative effect on arterial wall properties [6, 26, 66].

If a treatment procedure either produces or does not eliminate hemodynamic stresses that are harmful

to the artery walls, it would not be too surprising that arterial wall damage and subsequent SAH could

occur following what was originally deemed a successful treatment. Consequently, a better understanding

of post-treatment hemodynamic flow patterns and stresses within the vicinity of a treated aneurysm may

not only highlight some of the possible mechanisms leading to these failed treatments, but may also guide

medical device manufacturers in designing novel treatment techniques that could potentially reduce the risk

for recurring SAH.

To help provide this understanding, we investigate the pre- and post-treatment hemodynamics of an

aneurysm and parent artery using computational fluid dynamics (CFD) simulations. In particular, we

investigate the following questions in this study. What types of flow patterns arise following the treatment

of the aneurysm? How do these post-treatment flow patterns affect the hemodynamic stresses on the artery

wall? And, is it possible for a successful aneurysm treatment to either produce or fail to eliminate potentially

harmful hemodynamic stresses?

2 Setup

To address these questions, a virtual endovascular treatment is performed on the basilar aneurysm

of a 44 year-old patient admitted to the Radiology Department at the U.C. Davis Medical Center. The

aneurysm, which has a volume of 3.3 × 10−7 m3 and neck area of 5.5 × 10−5 m2, and the surrounding
vascular arteries are obtained from CT scan data (Figure 1a-b). CAD software (Maya 6.0) is used to “treat”

the aneurysm by replacing the aneurysm neck with a post-treatment lumen that represents the surface of

an aneurysm filling material. Thus, only the flow within the parent artery lumen is modeled following the

treatment. Defining the specific shape of the aneurysm filling material exposed to the post-treatment blood

flow is somewhat subjective. Even though the virtual treatment procedure completely fills the aneurysm and

leaves no “dog ears” around the periphery of the aneurysm neck, any number of shapes at the aneurysm neck

could have been selected, leading to slight variations in the curvature of the exposed surface of the aneurysm

filling material or in the location of the intersection between the filling material and the artery wall. To

ensure that the resulting post-treatment lumen shape is representative of that seen in a typical treatment,

an interventional neuroradiologist (J. Hartman) subsequently inspected this geometry and deemed it to be

a successful “endovascular treatment” of the basilar aneurysm. Due to the significant computational time

needed to obtain grid-converged solutions, the pre- and post-treatment simulations are conducted only on

this particular basilar bifurcation. (For example, the calculation of the transient solution on the finest, post-

treatment grid required 36 days of computing time on 128 2.4 GHz AMD Opteron CPUs. This translated
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to 61 days when the waiting times in the batch computing queuing system were taken into account.) In

future studies, we will have the opportunity to apply the present analysis to additional post-treatment basilar

bifurcations, thus allowing us to determine the probability of our present findings within a larger sample

size.

To properly apply the CFD boundary conditions needed to model the pre- and post-treatment flow

patterns and stresses, we loft circular, cylindrical extensions from the basilar artery (BA), the two posterior

cerebral arteries (PCA), and the two superior cerebellar arteries (SCA), respectively. We also assume that

the aneurysm and artery walls are rigid. Ferguson [26] compared the elasticity of aneurysms to that of

major intrancranial arteries and observed that aneurysms are relatively indistensible, indicating a loss of

elastin within their walls. The in vitro experiments of Steiger, et al. [77] on lateral, saccular aneurysms

demonstrated that the flow within an aneurysm is much more sensitive to the pulsatile nature of the cardiac

waveform than to the effects of vessel wall deformation. Additionally, others [24, 62, 92] showed that although

wall elasticity slightly decreases the magnitude of the wall shear stress, the overall flow and stress patterns

within the vessel remain unchanged. Thus, the assumption of rigid walls is adequate for these simulations.

A pulsatile velocity boundary condition is specified at the inlet to the basilar artery. Since in vivo

velocity data is not available for this particular patient, we use the cardiac waveform of Kato, et al. [50],

who measured the mean velocity within a basilar artery using a contrast-enhanced 2D cine phase MR

angiographic technique. With this in vivo data (Figure 2a), we employ the Womersley solution method

[34, 37, 89] to compute the pulsatile velocity profile, U(r, t), that is applied to the inlet (Figure 1a), where

r is the radial distance from the centerline of the inlet and t is time. A pulse frequency of f = 1.17 Hz (70

beats/minute) is chosen, yielding a Womersley number, 0.5do 2πfρ/µo, of 2.96, where do = 3.97 × 10−3
m is the diameter of the inlet circular cylinder to the basilar artery, µo = 0.0035 Pa·s is the characteristic
viscosity of blood, and ρ = 1060 kg/m3 is the characteristic density of blood [34, 37, 89]. At systole, which

is taken to be the phase (2o) of the maximum of the mean velocity over the cardiac cycle, the mean velocity,

Uo, is 0.496 m/s, while at diastole, which is likewise taken to be the phase (219
o) of the minimum of the mean

velocity, the mean velocity is 0.187 m/s. Over the entire cardiac cycle, the time-averaged mean velocity,

Uo, is 0.289 m/s, which corresponds to a time-averaged basilar artery flowrate of 3.58 × 10−6 m3/s (214.8
cc/min). The corresponding maximum, minimum, and mean Reynolds numbers, Re = ρUodo/µo, are 596,

225, and 347, respectively.

The viscosity of blood within the computational domain is modeled using a generalized power law [2],

which closely agrees with the Carreau model [8] for low to mid-range shear and is effectively Newtonian

for mid-range to high shear rates. Consequently, we anticipate that the Womersley velocity profile, U(r, t),

which is computed for a Newtonian fluid with a constant viscosity µo, will require a finite entrance length in

order to become fully developed within the non-Newtonian fluid. To properly model the flow within the pre-

and post-treatment basilar bifurcations, the length of the inlet circular cylinder extension must be greater
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than this entrance length, ye, which, for a pulsatile flow, is defined to be the distance along the pipe where

the difference between the centerline velocity and its fully developed value is less than one percent of it

time-averaged fully developed value [38]:

u(∞, r = 0, t)− u(ye, r = 0, t)
1
T

T

0
u(∞, r = 0, t)dt

= 0.01 (1)

where T is the period (6/7 s) of the cardiac cycle. Rather than use the entire computational domain of the

basilar bifurcation and aneurysm to determine the necessary entrance length, an iterative exercise that would

require an excessive amount of CPU time for these unsteady simulations, we utilize a domain comprised of

a circular cylinder of diameter do and length, l = 43do. The Womersley velocity profile is prescribed at the

inlet to the cylinder and a no-slip boundary condition along the cylinder wall. A zero gradient boundary

condition is specified at the cylinder outlet, such that the variables at the outlet nodes are extrapolated

from the values at the interior nodes. The unsteady Navier-Stokes equations [51] are solved within this

computational domain for a non-Newtonian fluid with a generalized power law viscosity model for blood.

The simulation is run for one cardiac cycle to eliminate the initial transients and the pulsatile entrance

length is subsequently computed over the second cardiac cycle. The maximum pulsatile entrance length,

which occurs at a phase of 318o, is found to be 5.4do. Subsequent refinement of the mesh and doubling of

the pipe length results in negligible changes (0.3% and 0.5%, respectively) to the pulsatile entrance length.

The fully developed, non-Newtonian velocity profile (Figure 2b) closely resembles the Newtonian velocity

profile in the region of high shear near the cylinder wall, though in the region of low shear at the cylinder

center, the non-Newtonian velocity profile is more plug-like in appearance. With the results of this exercise

in mind, we specify the length of the inlet circular cylinder extension to be 6do, thus allowing the pulsatile

velocity profile to become fully developed before entering the basilar artery of the patient.

To complete the specification of the boundary conditions, fractional outlet flowrates must be assigned

to the two PCAs and two SCAs. Amin-Hanjani, et al. [1] made in vivo flowrate measurements on fifty

healthy patients and observed that 72±22 and 68±18 cc/min of the 190±40 cc/min basilar artery inflow
exits through the left and right PCAs, respectively. Likewise, in a comparative study of patients with and

without preeclampsia, Zeeman, et al. [91] measured the left and right PCA flowrates within the healthy

patients to be nearly equal. However, in neither these studies, nor in those reviewed in the literature, is in

vivo flowrate data found for the left and right SCAs. Thus, for the sake of this study, we assume that the

exiting flow is equally divided between the left and rights sides of the basilar bifurcation. Furthermore, we

assume that 38.5% (82.7 cc/min) of the basilar artery inflow exits through each of the PCAs, a value about

equal to the PCA flowrate fraction measured by Amin-Hanjani, et al. and Enzmann, et al. [25], and, by

conservation of mass, that 11.5% (24.7 cc/min) of the remaining basilar artery inflow exits through each of

the SCAs. Lastly, we apply a zero gradient boundary at the PCA and SCA outlets, such that the variables



Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation, Ortega, et al., 1/10/08 7

at the boundary nodes are extrapolated from the values of the interior nodes.

The velocity, pressure, and viscosity fields are computed within the pre- and post-treatment bifurcations

using a finite-volume CFD code [75]. The spatial fluxes within the Navier-Stokes equations are discretized

with a second-order monotone advection and reconstruction scheme (MARS) [75], while the temporal deriv-

atives are discretized by blending a second-order Crank-Nicholson scheme with a first-order implicit scheme,

which reduces the over- and under-shooting of computed variables commonly observed with higher order

schemes. The resulting order of this blended scheme is 1.8. A time step of 4 × 10−5 s is chosen, resulting
in a mean (both spatial and temporal) Courant number that is of order 1 over all of the cells within the

computational domain. The finite volume equations are solved using an implicit predictor-corrector PISO

method [42, 43, 44], which utilizes operator splitting to temporarily decouple the flow equations from one

another allowing them to be solved sequentially with an algebraic multigrid (AMG) approach [68]. At each

time step, the residuals are reduced by at least three orders of magnitude. The velocity, pressure, and vis-

cosity fields are initialized by running a steady state simulation with an inlet velocity profile of U(r, t = 0)

for a few thousand iterations. The transient simulation is then initialized with this “steady state” solution

and run for three cardiac cycles to eliminate the initial transients in the flow field. Data sampling is made

over two additional cardiac cycles.

In order to ensure that the computed results are not dependent upon grid resolution, the simulations of

the post-treatment bifurcation are repeated on four trimmed cell grids [75] having sizes of 1.1 × 105 (G1),
4.0 × 105 (G2), 2.0 × 106 (G3), and 4.0 × 106 (G4) cells. The spatial average of the WSS in the area
immediately surrounding the treated aneurysm neck (Figure 3a-b) exhibits grid independence for the three

finest grids, as do the time-averaged and standard deviation (Figure 3c-d) of WSS through a slice (x = 0)

of the bifurcation. However, only the two largest grids adequately capture the unsteady WSS signal, while

the two coarser grids damp out the higher frequency content (Figure 3e). For this reason, the subsequent

simulations of the post-treatment bifurcation are performed on the grid, G3, and those of the pre-treatment

bifurcation on a grid with a comparable spatial resolution.

3 Results

The most apparent change to occur to the bifurcation flow field as a result of the treatment procedure

is the elimination of a confined jet that is produced by the basilar artery flow issuing through the pre-

treatment aneurysm neck. This jet, which spans nearly the entire length of the aneurysm prior to treatment,

impinges upon the aneurysm wall in a skewed fashion, forming a large recirculation zone on the posterior side

of the aneurysm as the jet reverses direction and exits through the aneurysm neck (Figure 4a). Following the

treatment procedure, however, the basilar artery flow impinges instead upon the base of the filling material

and produces a much smaller recirculation zone and a concentrated region of high-speed swirling flow on the

anterior side of the bifurcation (Figure 4b). A comprehensive understanding of these flow field changes can
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be obtained by examining the straining, Sij , and rotational, Ωij , components of the velocity gradient tensor,

ui,j , an approach which has proven to be quite successful in identifying the coherent structures present in

highly complex, three-dimensional flows [5, 23, 63, 73], where Sij = (ui,j + uj,i)/2 and Ωij = (ui,j − uj,i)/2
are the symmetric and skew-symmetric portions, respectively, of ui,j . The tensor quantities Sij and Ωij are

computed within the volume bounded by the dark-shaded area in Figure 3a, which for the pre-treatment

bifurcation also encompasses the aneurysm, and are interpolated onto a three-dimensional Cartesian mesh

with a spacing of ∆x = ∆y = ∆z = 6× 10−5 m, thus providing a uniform distribution of points from which

probability statistics may be obtained. The joint probability density plots of S∗ijS
∗
ji and −Ω∗ijΩ∗ji (Figure

4c-f) for the pre- and post-treatment bifurcations highlight the underlying flow structures by comparing the

relative importance of the straining and rotational components of the velocity gradient tensor, where the

plotted quantities S∗ijS
∗
ji and −Ω∗ijΩ∗ji are the values of SijSji and −ΩijΩji non-dimensionalized by (Uo/do)2.

Points near the S∗ijS
∗
ji-axis are characterized by straining motion, while those near the −Ω∗ijΩ∗ji-axis by solid-

body rotation; those points lying along the line S∗ijS
∗
ji = −Ω∗ijΩ∗ji have nearly equal straining and rotational

motions [5]. At both diastole and systole, the majority of the fluid within the pre- and post-treatment

bifurcations exhibits nearly equal straining and rotational motions, indicating a predominantly “sheet-like”

or shearing flow [73]. Though at diastole, it is evident that the treatment procedure increases the probability

of both pure straining and pure rotational motions. At systole, there is a slight decrease in the amount of

pure straining motion and a slight increase in the amount of rotational motion.

The flow structures corresponding to these probability distributions are visualized by plotting iso-surfaces

of the second invariant of the velocity gradient tensor, Q∗ = 1
2(−Ω∗ijΩ∗ji − S∗ijS∗ji), which is equivalent to

a 45 degree line with a y−intercept of −2Q∗ in Figure 4c-f. Clearly it follows that where Q∗ is large and
positive, the flow field is rotationally dominant (−Ω∗ijΩ∗ji >> S∗ijS∗ji); where Q∗ is large and negative, it is
straining dominant (−Ω∗ijΩ∗ji << S∗ijS∗ji); and where Q∗ = 0, rotation and strain are equal to one another
(−Ω∗ijΩ∗ji = S∗ijS

∗
ji). The iso-surfaces of Q

∗ = 40 indicate the presence of vortex tubes in the bifurcation.

Prior to treatment, the aneurysm at systole is filled with a periodic train of these tubes (Figure 4g), which

form at the aneurysm neck and advect upwards into the dome. However, the treatment procedure prevents

the upward motion of these vortices, thus confining them along the junction of the aneurysm filling material

and the artery wall. An example of this is plainly evident on the anterior side of the bifurcation (Figure 4h),

in which a vortex tube, corresponding to the swirling flow region in Figure 4b, spans the entire bifurcation

and extends downstream into the left PCA. Iso-surfaces of Q∗ = −40 (not shown) at systole reveal that
regions of the large straining motion arise at the stagnation zones of the basilar artery flow upon either

the aneurysm wall (pre-treatment) or the filling material (post-treatment). Upstream of the bifurcation, no

iso-surfaces of Q = ±40 are present. This is expected since the basilar artery flow in this region does not
significantly deviate from the inlet Womersley velocity profile, which is characterized in general by a shearing

motion with nearly equivalent magnitudes of fluid strain and rotation.
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The confinement of the vortex tubes (Figure 5a-b) and the impingement of the basilar artery flow upon

the aneurysm filling material establish distinct velocity fields that persist throughout the entire cardiac cycle.

Profiles through the anterior vortex tube (along the zI axis in Figure 5b) of the vertical velocity component

(Figure 5c) reveal a large downward velocity induced by the vortex. At systole, this profile exhibits a steep

velocity gradient (≈ 11, 000 s−1) at the wall. On the posterior side of the basilar artery flow stagnation

point (d ≈ 10.3× 10−3 m; see also Figure 4b), the horizontal velocity profiles (along the yI axis) indicate the
presence of a wall jet (Figure 5d) with boundary layer thicknesses about equal to 0.25× 10−3 m at diastole

and 0.15× 10−3 m at systole. At systole, the accompanying velocity gradient at the wall is likewise about

11, 000 s−1. Large shear rates, such as these, exist throughout the post-treatment bifurcation, resulting in

WSSs that are much greater than those present on the pre-treatment aneurysm wall. Prior to treatment,

the WSS over aneurysm wall exhibits two distinct local maxima along the x = 0 cross-section (Figure 5e).

The first (d ≈ 14 × 10−3 at diastole; d ≈ 16 × 10−3 m at systole) is due to the skewed impingement of

the confined jet, while the second (d ≈ 24 × 10−3 m at diastole and systole) occurs when the recirculating

flow glances upon a convex protuberance of the aneurysm. By removing the cavity previously formed by

the aneurysm, the treatment procedure forces the basilar artery flow to impinge in a nearly perpendicular

manner upon the aneurysm filling material and to change direction over a much smaller volume, which, in

turn, produces larger WSSs at diastole and especially at systole (Figure 5f). The local maximum in the

post-treatment WSS at d ≈ 6 × 10−3 m is caused by the adjacent vortex tube on the anterior side of the

bifurcation. A qualitatively similar local increase in the WSS was shown by Walker [84] for a vortex placed

in close proximity to a wall. On the other hand, the pair of maxima at d ≈ 8 × 10−3 m and 10 × 10−3 m
are due to the stagnation of the basilar artery flow upon the aneurysm filling material. The appearance of

this pair of closely spaced peaks in WSS separated by a distinct local minimum (d ≈ 9× 10−3 m) is similar
to the WSS distribution resulting from the impingement of an axisymmetric jet upon a plane [18, 19, 64].

(Note that the minimum in WSS at d ≈ 9× 10−3 m does not equal zero since the x = 0 cross section shown

in Figure 5f does not coincide with the stagnation point at diastole and systole.) At systole, a secondary

impingement (d ≈ 15 × 10−3 m, see also Figure 4b) of the basilar artery flow also generates two closely

spaced local maxima in WSS separated by a distinct local minimum, though the peak values of WSS are

significantly less than those of the primary impingement.

In addition to altering the spatial distribution of WSS, the treatment procedure also affects its transient

evolution. Prior to treatment, the most apparent temporal features in the WSS are those from the confined

jet impingement and the recirculating flow that glances upon the convex protuberance (Figure 6a). These

signatures are marked by a considerable amount of unsteadiness, which is evident by the periodically spaced,

angled streaks at the beginning and latter phases of the cardiac cycle. The streaks are caused by the passage

of the vortex tubes, whose transient presence is the result of a shear layer instability that develops on the

confined jet (Figure 7a). The nominal vortex shedding frequency, which can be found from the phase spacing
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of the streaks in Figure 6a, is about 70 Hz from 0o < phase < 40o. From the nominal slope of these WSS

streaks, the convective velocity, Uc of the train of vortex tubes is found to be about 1 × 10−3 m/deg, or
equivalently 0.4 m/s. Since the recirculating flow rotates clockwise within the aneurysm (when viewed from

the left side of the patient), the streaks are sloped in one direction. The nominal wavelength, λ = Uc/f , of

the shear layer instability is 6× 10−3 m, a value that is on the order of that observed in the vorticity field at
systole (Figure 7a). Following the treatment procedure, the WSS streaks are still evident on the bifurcation

wall, though they do not persist to the extent seen prior to treatment (Figure 6b). This indicates that the

removal of the aneurysm cavity suppresses the shear layer instability over portions of the cardiac cycle, which

now has a more temporally uniform WSS distribution (100o < phase < 300o) that is distinguished mainly

by the signatures of the basilar artery flow impingement (7× 10−3 m < d < 11× 10−3 m) and the anterior
vortex tube (5× 10−3 m < d < 6× 10−3 m). Over those phases in which the shear layer instability persists
(Figure 7b), the frequency of the instability is increased slightly to about 90 Hz, as determined from the

nominal phase spacing of the WSS streaks from 0o < phase < 40o.

The presence of high frequency, intra-aneurysmal flow unsteadiness is not unique to this particular patient,

but has been observed in other aneurysms as well. Ferguson [26] and Ferguson & Roach [27] measured the

in vivo flow oscillations of saccular aneurysms using a phonocatheter and found them to produce narrow-

band sounds in the range of 300-600 Hz. It was deduced that these sounds, which in fact had a “musical

quality” to them, were caused by turbulent flow within the aneurysm. In a recent computational study of a

generic basilar aneurysm, Valencia, et al. [83] observed oscillatory WSSs on the aneurysm dome throughout

the cardiac cycle. Even for a steady inlet boundary condition at the basilar artery, the WSS fluctuations

had a dominant frequency of 17.5 Hz. Interestingly, when the aneurysm was removed from the vascular

system and a healthy bifurcation modeled, Valencia, et al. showed a near complete elimination of the higher

frequency WSS oscillations. Others [61, 70, 85] have observed similar frequencies within aneurysms using ex

vivo “electronic stethoscopes.” With an optical transducer, Simkins & Stehbens [72] recorded frequencies in

the range of 10-30 Hz from measurements conducted on experimental saccular aneurysms. In much the same

accord, Steiger & Reulen [76] observed frequencies in unsteady aneurysm flows in the range of 7-17 Hz from

intra-operative Doppler recordings of patients undergoing a craniotomy. Steiger & Reulen also performed a

study on rigid, glass models of generic aneurysms and confirmed the presence of flow oscillations in regions

of the flow where deceleration occurred. One notable phenomenon they observed was for a terminal, saccular

aneurysm. When a 50/50 branching ratio was imposed upon the two outlet arteries, the visualization dye

was seen to fill the aneurysm in, what Steiger & Reulen referred to as, “irregular waves.” Whether or not

these “waves” are indications of a shear layer instability that rolls up into discrete vortex tubes is difficult

to ascertain from the dye injection and streaming birefringence images presented in Fig. 4 of [77].

Across the entire surface of the post-treatment bifurcation, it is evident that the magnitude of WSS is

dominated by the signatures of the confined vortex tube and the basilar artery flow impingement, unlike
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the pre-treatment aneurysm in which the most distinct feature is an asymmetric annulus of raised WSS

due to the impinging confined jet (Figure 7c-d). The WSS signature from the vortex tube has a quasi-2D

appearance in the form of a narrow band that spans a region beneath the treated aneurysm. Near the center

of this band (x = 0 m, d = 5.7 × 10−3 m), the magnitude of WSS varies over the cardiac cycle from a

maximum of 51 Pa (0.58ρU
2

o) at phase = 1o to a minimum of 8.7 Pa (0.098ρU
2

o) at phase of 230
o (Figure

8a). The WSS signature from the impinging basilar artery flow has a roughly axisymmetric distribution

centered upon the flow stagnation point (Figures 7d and 8b), which is the location of a local minimum in

the WSS. The transient location of this stagnation point is obtained by fitting the surrounding WSS data

with a fifth-order polynomial surface and computing the location of the minimum value of WSS on this

surface, thereby yielding sub-mesh resolution accuracy of the stagnation point at each cardiac phase. Over

the course of the cardiac cycle, it is apparent that the stagnation point traverses a tortuous circuit that is

fairly repeatable from one cycle to the next (Figure 8b). At both systole and diastole, plots of the WSS as

a function of the radial distance, rs, from the stagnation point demonstrate that the WSS increases from

the stagnation point to a local maximum and then decreases at larger radial distances (Figure 8c-d). To

determine, in general, how this maximum WSS and the radial location at which it occurs vary over the

cardiac cycle, the WSS plots at each time step are fit in the vicinity (0 ≤ rs ≤ 1.75 × 10−3 m) of the
stagnation point with an empirical relationship,

τw(rs, t) =
ao(t)

rs
(1− e−r2s/a1(t)2) (2)

that captures the overall features of the transient WSS distribution. It follows from Eq. 2 that the maximum

WSS of the curve fit is

τwmax
(t) = 0.638

a0(t)

a1(t)
(3)

and its radial location, rsmax , is 1.12a1(t) at each phase throughout the cardiac cycle. It is evident that rsmax

remains within 1.3× 10−3 m (0.33do) of the migrating stagnation point over the entire cardiac cycle (Figure

8e). Furthermore, τwmax varies from a minimum of 10 Pa (0.11ρU
2

o) at a phase of 230
o to a maximum value

of 44 Pa (0.50ρU
2

o) at a phase of 8
o (Figure 8f) and displays a time-dependent behavior that is similar to

that of the WSS due to the anterior vortex tube (see Figure 8a).

4 Discussion

In the major arteries throughout the human body, the nominal WSS ranges from about 0.2-2 Pa [16].

Near arterial branches and regions of sharp wall curvature, the WSS increases as shown in the simulations

of Valencia et al. [83], in which the maximum WSS of non-Newtonian blood flow through a generic healthy
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basilar bifurcation is on the order of 25 Pa. Yet, the present computational results demonstrate that across

a signification portion of the aneurysm filling material and basilar artery wall, the treatment procedure

produces WSSs that are several times greater than these nominal values. This could have an effect upon

the post-treatment bifurcation, as a number of studies have shown that the WSS alters the properties of the

endothelial cells lining the artery wall. For values of WSS less than approximately 0.5-1.5 Pa, the endothelial

cells are randomly aligned and have a cobblestone, or polygonal shape [11, 13, 17, 49]. Endothelial cells with

this shape occur not only in regions uniformly exposed to low WSS, but also in local low WSS regions in

which there is flow separation or reattachment [14]. When the WSS is increased beyond 0.5-1.5 Pa, the cells

elongate from a polygonal shape to an ellipsoidal shape and become uniformly oriented in the direction of the

WSS [11, 13, 17]. While the response time for the endothelial cells to attain this ellipsoidal shape depends

upon the magnitude of the applied WSS, it is typically on the order of several hours [17, 49]. The number of

thick stress fibers that are parallel to the long axis of the cell increases after application of the WSS, thereby

stiffening the cell [17, 49]. The cell height has also been observed to decrease by about 1-2 microns under

the application of WSS [4, 74]. It has been suggested that the endothelial cells change their shape in this

manner so as to minimize the total force on the cell nuclei [36]. Exposure of the endothelial cells to these

nominal levels of WSS has a beneficial effect since the WSS tends to inhibit cell proliferation, which may

prevent artherogenesis, and to upregulate various genes that are considered important in maintaining the

integrity of the endothelial surface [20, 21, 28, 55, 80].

However, continued increases in the WSS can have a detrimental effect upon the integrity of the endothe-

lial cells. For example, flow-induced trauma to the endothelium has been observed in several animal model

studies, in which an artery is partially collapsed so as to increase the local WSS [32, 45, 53]. In some cases,

the elevated WSS completely scours off the endothelial cells, thereby exposing the internal elastic lamina, or,

in other cases, produces “cellular ulcers,” consisting of cell membrane loss and of a thin layer of underlying

cytoplasm [45]. To quantify the threshold values of WSS that result in damage to the endothelial cells, Fry

conducted an animal model study in which a plug with a longitudinal groove was placed inside an animal

aorta [29, 30]. The groove, which was adjacent to the endothelial surface, accelerated the blood flow, thereby

generating a range of elevated WSSs. From these studies, Fry quantified two key values of the WSS: the

acute critical yield stress, τwc, and the erosion stress, τwe. The acute critical yield stress, measured to be

37.9 ± 8.5 Pa in [29] and 42.0 Pa in [30], is defined to be the time-averaged shear stress that results in the
greatest rate of change of normal to abnormal endothelial cell forms through processes that Fry describes as

“yielding,” “melting,” “dissolving,” or “changing chemically,” all of which lead to a distinct deterioration of

the endothelial surface. The erosion stress (95.0 Pa) is defined to be the time-averaged shear stress at which

the greatest number of cells is eroded from the endothelium [30]. In both cases, Fry found that the elevated

WSSs produced distinct structural changes to the endothelium that increased the arterial wall permeability

to macromolecules, such as low density lipoprotein. Fry also noted that since a finite amount of time is
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necessary for damage to occur to the endothelium, τwe exhibits a functional dependence upon the exposure

time to elevated WSSs; for brief exposures, τwe is large, while, for long exposures, τwe gradually approaches

τwc. In a later in vitro study, Vaishnav, et al. measured τwe by impinging jets of physiological saline onto

endothelium segments and by correlating the regions of cellular damage with the local WSSs for exposure

times ranging from 30-7200 s [82]. After 30 s of exposure, τwe was measured to be 505 Pa. However, an

empirical curve fit of τwe as a function time indicated that, for large exposure times, τwe asymptotically

approaches 60 Pa, a value comparable to the acute critical yield stress measured by Fry.

The treatment procedure of the basilar aneurysm produces a marked increase in the WSS to levels that

are instantaneously greater than the acute critical yield stress (37.9 Pa). This is especially true at systole

where the maximum WSS due to the vortex tube and the impinging basilar artery flow is approximately 50

Pa (see Figure 8a,c). At systole, the total area, Ac, exposed to a WSS greater than 37.9 Pa is 1.0×10−5 m2, a
surface area which is equal to 81% of the characteristic area, Ao =

π
4 d

2
o, of the inlet basilar artery (Figure 9a).

Throughout the cardiac cycle (0o ≤ phase ≤ 360o), Ac fluctuates from a maximum of 1.3× 10−5 m2 (1.1Ao)
at a phase of 4o to a minimum of zero over phases 131o to 288o (Figure 9b). This is quite an increase in

surface area when compared to the pre-treatment bifurcation, in which Ac is at most 1.8×10−6 m2 (0.14Ao)
(over 0o ≤ phase ≤ 360o) at a phase of 13o and is comprised of the regions where the confined jet impinges
upon the aneurysm wall at d ≈ 15× 10−3 m and where the recirculating flow within the aneurysm glances

upon the convex protuberance at d ≈ 24× 10−3 m (see Figure 5e). This increase in WSS also increases the

fraction of time over the cardiac cycle in which the WSS exceeds the acute critical yield stress (Figure 9c).

When time-averaged over the cardiac cycle, the WSS across the pre-treatment bifurcation remains less than

37.9 Pa. However for the post-treatment case, there is an area of 1.4 × 10−7 m2 (0.01Ao) at the junction
of the right PCA and the basilar artery (Figure 9d) that is exposed to a time-averaged WSS greater than

37.9 Pa. Based upon the histological data of Fry, this area of the artery wall would subsequently undergo

endothelial cytoplasmic swelling and cell deformation and disintegration. It should be noted that since the

prescribed basilar artery flowrate in these simulations corresponds to a resting condition, the arterial wall

area exposed to WSSs greater than the acute critical yield stress represents a lower bound of time-averaged

damage. For exercise conditions, in which the basilar artery flowrate is elevated by an increase in both

the cardiac frequency and the stroke volume of the heart, the magnitude of the time-averaged WSS would

increase across the basilar bifurcation and, subsequently, enlarge the post-treatment area of endothelial cell

damage.

The elevated WSSs could also lead to long-term arterial wall remodeling in the vicinity of the treated

aneurysm neck. A number of studies [33, 47, 58, 71, 90, 93] have shown that arteries exposed to increased

WSS remodel by expanding in diameter until the WSS returns to a nominal value. Masuda, et al. [58]

observed that this expansion process arose from gaps in the internal elastic lamina. Over a period of several

days, these gaps expanded to form circumferential depressions across the lumen surface. After several weeks,
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the internal elastic lamina widened as the luminal depressions became interconnected with one another.

Endothelial cells proliferated within these gaps, thereby providing a continuous cell lining over the expanded

arterial lumen. By measuring artery diameters for vessels with and without endothelial cells, Langille &

O’Donnell [52] showed that endothelial cells are necessary for this remodeling process to occur in response

to changes in the WSS. Recently, Meng, et al. [59] observed two types of vessel remodeling within arterial

bifurcations that were examined either 2 weeks or 2 months after their initial surgical generation. The first

was an intimal pad that formed where the parent artery flow impinged upon the apex of the bifurcation.

Within this region, the intima was thicker due to additional collagen and elastin layers. The second type

of remodeling, located immediately adjacent to the intimal pad, differed in that it was injurious in nature

and resulted in severe degradation of the arterial wall structure, including internal elastic lamina destruction

and smooth muscle cell, fibronectin, and endothelial cell losses. Most notably, in five of the six bifurcations

Meng, et al. investigated, a groove developed on the thinned media in this region, possibly indicating the

early stages of aneurysm formation. The corresponding CFD simulations demonstrated that this region

was exposed to substantially increased levels of WSS and the WSSG. Such remodeling could potentially

occur over the post-treatment bifurcation in the present study. Perhaps, in the area adjacent to the vortex

tube, the endothelial cells that survive outside the region of acute critical yield stress would lead to local

vessel dilatation, which may reduce the velocity gradients, thus returning the WSS to nominal levels and

ensuring the long-term success of the treatment procedure. On the other hand, the endothelial cell damage

due to the extreme values of WSS could be so severe that the artery wall degrades in a manner similar

to that of Meng, et al., possibly resulting in aneurysm re-growth. Regardless, without in vivo data for

this post-treatment geometry, it is difficult to determine at the present time exactly how vessel remodeling

might proceed. In future animal model studies, we will be able to make direct correlations between the

post-treatment hemodynamic stresses and the long-term outcome of treated aneurysms.

5 Conclusion

By performing a virtual endovascular procedure, we have investigated the post-treatment hemody-

namics of a basilar aneurysm and bifurcation. The Womersley solution, computed from in vivo flowrate

data, is specified at the inlet to the basilar artery, thereby supplying a physiological flow to the bifurcation.

Prior to treatment, the velocity field within the aneurysm is comprised of a confined jet that is produced

by the basilar artery flow issuing from the aneurysm neck. At systole, this jet undergoes an instability, in

which the shear layers roll up into a periodic train of discrete vortex tubes. However, following the treat-

ment procedure, in which the aneurysm is occluded, the basilar artery flow impinges instead upon the base

of the aneurysm filling material, forming a stagnation zone and trapping a vortex tube along the anterior

junction of the filling material and the basilar artery wall. The resulting WSS signatures produced by the

flow stagnation and the vortex tube have magnitudes that are significantly greater than those present on
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the pre-treatment artery and aneurysm walls. In fact, when time-averaged over the cardiac cycle, the WSS

at the junction of the basilar artery and one of the PCAs has a magnitude that is greater than that shown

by previous in vivo studies to cause severe damage to endothelial cells. Whether or not this increase in

post-treatment hemodynamic stress is a common occurrence that leads to long-term aneurysm re-growth or

rupture is beyond the scope of the present study and, therefore, remains to be determined in subsequent

CFD simulations, animal model studies, and clinical investigations of additional patients. However, what is

indicated by the present study is that the treatment procedure, while successful in occluding the aneurysm

and leaving no neck remnant, elevates the WSSs to levels that are in theory injurious to the adjacent arterial

wall.

The significant increase in WSS predicted by these simulations is a necessary consequence that results

from occluding the aneurysm. Unfortunately, current endovascular treatment techniques do not offer the

flexibility or fidelity to make small changes to the post-treatment lumen shape, which could possibly mitigate

these extreme levels of WSS. However, there are other treatment techniques currently under development

that may allow the WSSs to be tailored in the vicinity of the occluded aneurysm neck. An example of such

a technique that could potentially be applied in this manner is one that utilizes a thermally-actuated shape

memory polymer (SMP) foam that is delivered through a catheter to an aneurysm [56]. Since the shape

into which the SMP foam is cut can be pre-determined, not only can patient-specific shapes be produced

from pre-operation CT or MRI scans of the aneurysm, but optimized shapes that reduce the WSSs could

also be machined into the SMP foam. One possible optimized shape for the present bifurcation could be

one that gradually diverts the blood flow in the direction of the downstream arteries (Figure 10), potentially

minimizing the extreme WSS signatures due to the vortex tubes and the impinging parent artery flow.
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Figure 1: Pre- and post-treatment geometries of the basilar aneurysm and bifurcation.

Figure 2: a) Mean velocity through a basilar artery as measured in vivo by Kato, et al. [50]. b) Velocity

profiles for the Womersley solution (solid line), the present Newtonian CFD simulations (◦ ◦ ◦), and a non-
Newtonian, generalized power law fluid [2] (dashed line) for fully-developed, pulsatile flow in a circular pipe

of diameter, do = 3.97× 10−3 m.

Figure 3: a) Interrogation area for computing the spatial mean of the WSS across the bifurcation. b)

Spatial average of the WSS across the interrogation area over two cardiac cycles, c) average and d) standard

deviation of the WSS along x = 0 of the post-treatment bifurcation, and e) the fast Fourier transform of the

unsteady, post-treatment WSS at x = 0, d = 15× 10−3 m for four different mesh resolutions (G1, G2, G3,

G4).

Figure 4: Velocity magnitude and streamlines at systole for the a) pre- and b) post-treatment bifurcations

at x = 0. Joint probability density plots of S∗ijS
∗
ji and −Ω∗ijΩ∗ji for the c,e) pre- and d,f) post-treatment

bifurcations at c,d) diastole and e,f) systole. Iso-surfaces of Q∗ = 40 for the g) pre- and h) post-treatment

bifurcations at systole.

Figure 5: Contours of Q∗ > 0 at systole for the a) pre- and b) post-treatment bifurcations at x = 0. c)

y- and d) z-components of the velocity field along the zI- and yI-axes (see Figure 5b), respectively, of the

post-treatment bifurcation at systole. WSS at x = 0 for the e) pre- and f) post-treatment bifurcations at

systole (solid line) and diastole (dashed line).

Figure 6: Spatial-temporal plot of the WSS at x = 0 for the a) pre- and b) post-treatment bifurcations.
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Figure 7: Contours of the x−component of vorticity, ωx, at x = 0 for the a) pre- and b) post-treatment

bifurcations (ωx < 0, gray contours; ωx > 0, black contours), where ω = ∇× u. WSS across the c) pre- and
d) post-treatment bifurcations at systole. The black arrows highlight the WSS signature of the impinging

basilar artery flow. For the post-treatment bifurcation, the black arrow is directed at the basilar artery flow

stagnation point, while the white arrow indicates the WSS signature due to the vortex tube that is adjacent

to the artery wall.

Figure 8: a) Post-treatment WSS at x = 0, d = 5.7× 10−3 m (see Figures 3 or 5 for the definition of d) due

to the vortex tube adjacent to the artery wall. b) Transient location of the stagnation point arising from the

impinging basilar artery flow upon the aneurysm filling material. The gray contours indicate the magnitude

of the WSS surrounding the stagnation point at systole. Radial distribution of the post-treatment WSS in

the vicinity of the basilar artery flow stagnation point at c) systole and d) diastole. The solid lines denote

the WSS curve fit defined in Eq. 2. e) Radial location, rsmax
, of the f) maximum WSS, τwmax

, from the

curve fit.

Figure 9: a) Contour of the area, Ac (black), in which the post-treatment WSS is greater than 37.9 Pa

at systole. b) Ac as a function cardiac phase for the pre- (solid line) and post-treatment (dashed line)

bifurcations. c) Fraction of time over two cardiac cycles in which the pre- and post-treatment WSS at x = 0

is greater than 37.9 Pa. d) Contour of the area, Ac (black), in which the time-averaged, post-treatment WSS

is greater than 37.9 Pa.

Figure 10: Schematic of the SMP foam aneurysm treatment technique with a tapered geometry that

gradually redirects the parent artery flow into the downstream arteries.
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